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Preliminaries

System: ẋ = f(x) + g(x)u, where x ∈ Rn, u ∈ U ⊂ Rm where U is
compact
Safe set: S = {x ∈ Rn | h(x) ≤ 0} for h : Rn → R

Goal is to render trajectories always inside S
Assume f, g, h are r-times continuously differentiable, where r is the
relative-degree of h (lowest r such that h(r) depends on u)
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Background - Control Barrier Functions

Control Barrier Functions (CBFs) are a method to certify existence of
safe control inputs
S is rendered forward invariant if and only if ḣ(x, u) = ∂h(x)

∂x ẋ ≤ 0 for all
x ∈ ∂S (Nagumo’s Theorem)

In practice, enforce ḣ(x, u) ≤ α(−h(x)) for all x ∈ S

Definition 1
A continuously differentiable function h : Rn → R is a Control Barrier Function (CBF) on set
S for control set U if there exists α ∈ K such that

inf
u∈U

[ḣ(x, u) − α(−h(x))] ≤ 0, ∀x ∈ S .
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Example

Double-integrator with a position constraint
ẋ = v

v̇ = u

h([x, v]T) = x

S = {(x, v) ∈ R2 | x ≤ 0}
ḣ([x, v]T) = v → ∃(x, v) ∈ ∂S : ḣ([x, v]T) ̸≤ 0

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

h is not a CBF
ḣ does not depend on u, so h is of “high-relative-degree” (i.e. r > 1)
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High Relative Degree Constraints

Fact: H = h+ ḣ is a CBF for the prior example, provided no input
constraints (i.e. U = Rm)
Prior work on converting high-relative-degree h to CBFs

Backstepping approach (Hsu, Xu, Ames, ACC 2015)
Exponential CBFs (Nguyen, Sreenath, ACC 2016)
Compositions with h(r) (Ames, Xu, Grizzle, Tabuada, TAC 2017)
Backup Controllers (Squires, Pierpaoli, Egerstedt, CCTA 2018)
Higher Order CBFs (Xiao, Belta, CDC 2019)
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Contribution

Suggest two forms of H : Rn → R that are CBFs in the presence of
input constraints, where H(x) ≥ h(x) for all x ∈ Rn so that
SH = {x ∈ Rn | H(x) ≤ 0} ⊂ S

SH = the “inner safe set” = set
of allowable initial conditions
Existence of a CBF implies we
can render SH forward invariant
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Method 1

For some policy u∗ : Rn → U , define ψx(t;x, u∗) = y(t) according to
the initial value problem

ẏ = f(y) + g(y)u∗(y), y(0) = x

and ψh(t;x, u∗) = h(ψx(t;x, u∗))
E.g. u∗

ball(x) = arg min
u∈U

h(r)(x, u) = arg min
u∈U

LgL
r−1
f h(x)u

u∗ called the “nominal evading maneuver” in [Squires, Pierpaoli,
Egerstedt, CCTA 2018]
We do not need closed-form expressions for ψx, ψh
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Method 1

Define H(x) ≜ supt≥0 ψh(t;x, u∗)

Assumption 1
Assume H exists and is differentiable everywhere in S.

Theorem 1
H is a CBF on the set SH for the control set U , provided SH is nonempty.

We do not need closed-form expressions for H
The CBF condition Ḣ(x, u) ≤ α(−H(x)) is still control-affine
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Method 2

Let u′ : Rn → U be a policy such that

h(r)(x, u′(x)) = −amax,∀x ∈ S

for some fixed amax ∈ R>0 (provided amax exists).
One such amax is

amax ≜ max
({

a ∈ R
∣∣ ∀x ∈ S, ∃v ∈ (LgLr−1

f h(x))⊥ : −
(a + Lr

f h(x))(LgLr−1
f h(x))

||LgLr−1
f h(x)||2 +v ∈ U

})

ψh(t;x, u′) is a polynomial in t

ψh(t;x, u′) =
r−1∑

i=0

1
i!h

(i)(x)ti − 1
r!amaxt

r
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Method 2

Define H ′(x) ≜ supt≥0 ψh(t;x, u′)
Existence and differentiability of H ′ are guaranteed

Theorem 2
H ′ is a CBF on the set SH′ for the control set U , provided SH′ is nonempty.
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Complexity

Method 1 requires propagating a n× 1 and a n× n ordinary differential
equation
Method 2 requires finding the roots of a (r − 1)-dimensional polynomial
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Application 1

Double integrator with a spherical exclusion region

ẋ =
[
ṙ
v̇

]
=

[
v
u

]

r, v,∈ R3, u ∈ U = {u ∈ R3 | ∥u∥∞ ≤ umax}
h(x) = ρ− ∥r − rs∥ for fixed rs ∈ R3

amax = umax
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Application 1

Lyapunov function

V (x) = 1
2 ||r − rp||2 + 1

2k2||v − k1(r − rp)||2

where rp ∈ R3 is a target location.
Control law:

u(x) = arg min
u∈U,δ∈R

uTu+ Jδ2 such that

LfH(x) + LgH(x)u ≤ α(−H(x))
LfV (x) + LgV (x)u+ δ ≤ −k3V (x)
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Application 1 Results

Comparison CBF (no
guarantee of input
constraint satisfaction)
from [Ames, Xu, Grizzle,
Tabuada, TAC 2017]

Ho(x) =
(
arctan(ḣ(x)) + π

2

)
h(x)
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Application 1 Results

0 10 20 30 40 50 60 70 80 90 100

Time (s)

-0.05

0

0.05

0.1

0.15

u
 (

m
/s

2
)

Control Input u
x

u
y

u
z

Figure: The control input using Ho(x) from prior work, which necessitates using control
inputs outside the prescribed bounds (dashed red lines) for the QP to have a solution
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Figure: The control input using H(x) as in Method 1
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Figure: The control input using H′(x) as in Method 2
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Application 2 (Spacecraft)

Dynamics
ẋ =

[
ṙ
v̇

]
=

[
v

fµ(r) + u

]

Simulated using only H ′ to reduce computations
amax < umax (amax ≈ 1

2umax in this simulation)
Collection of CBFs {H ′

i(x)}7790
i=1 for point cloud model {rs,i}7790

i=1
rp = rp(x) moving target (for Lyapunov function)

15 / 18



Application 2 Results

https://youtu.be/JKj3PUrYnEg
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Conclusion

Presented two explicit methods for constructing CBFs with input
constraints
Feasibility of Ḣ ≤ α(−H) under input constraints is guaranteed within
the zero sublevel sets of both CBFs
Expanded utility of CBFs as an online control methodology
Current/future work

Input constraints + disturbances + sampled-data dynamics
Fuel-optimality/planning
Multi-agent space systems
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